國立聯合大學 104 學年度 | 化學 | 工程學系 | <u>(</u> 院)學系 | 轉导 | 學生招生 | 考訪 | 式試題紙 | |------|------|---------------|----|-------------|----|------| | 科目:_ | 普通化學 | 第_ | 1 | 頁共_ | 2 | 頁 | - 第1題4分其餘每題6分總計共100分,各題如有計算請詳列計算式 - 1. A gaseous mixture containing 1.5 mol Ar and 3.5 mol CO₂ has a total pressure of 7.5 atm. What is the partial pressure of CO₂? - 2. A 1.57-g sample of a metal chloride, MCl₂, is dissolved in water and treated with excess aqueous silver nitrate. The silver chloride that formed weighed 3.47 g. Calculate the molar mass of M. - 3. A 0.307-g sample of an unknown triprotic acid is titrated to the third equivalence point using 35.2 mL of 0.106 *M* NaOH. Calculate the molar mass of the acid. - 4. Given reaction $N_2 + 3H_2 \rightarrow 2NH_3$, you mix 1 mol each of nitrogen and hydrogen gases under the same conditions in a container fitted with a piston. Calculate the ratio of volumes of the container ($V_{\text{final}}/V_{\text{initial}}$). - 5. You have a 400-mL container containing 55.0% He and 45.0% Ar by mass at 25°C and 1.5 atm total pressure. You heat the container to 100°C. Calculate the total pressure and the ratio of P_{He} : P_{Ar} . - 6. A sample of N₂ gas is contaminated with a gas (A) of unknown molar mass. The partial pressure of each gas is known to be 200 torr at 25°C. The gases are allowed to effuse through a pinhole, and it is found that gas A escapes at 5 times the rate of N₂. What is the molar mass of gas A? - 7. Predict the signs (+ or) of ΔS° , ΔH° , and ΔG° for the following reaction at 25°C. $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O(l)$ - 8. The reduction potentials for Au^{3+} and Ni^{2+} are as follows: $Au^{3+} + 3e^- \rightarrow Au$, $\mathcal{E}^\circ = +1.50 \text{ V}$ $Ni^{2+} + 2e^- \rightarrow Ni$, $\mathcal{E}^\circ = -0.232 \text{ V}$ Calculate ΔG° (at 25°C) for the reaction: $2Au^{3+} + 2Ni \rightarrow 3Ni^{2+} + 2Au$ - 9. The decomposition of dinitrogen pentaoxide has an activation energy of 102 kJ/mol and $\Delta H^{\circ}_{rxn} = +55$ kJ/mol. What is the activation energy for the reverse reaction? - 10. Consider the equation $A(aq) + 2B(aq) \implies 3C(aq) + 2D(aq)$. In one experiment, 45.0 mL of 0.050 M A is mixed with 25.0 mL 0.100 MB. At equilibrium the concentration of C is 0.0410 M. Calculate K. - $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ At a particular instant in time, the value of $-\triangle[Br^-]/\triangle t$ is 2.9 x 10^{-3} mol/L s. What is the value of $\triangle[Br_2]/\triangle t$ in the same 11. The balanced equation for the reaction of bromate ion with bromide ion in acidic solution is given by: - 12. Consider the reaction: $A_2 + B_2 \rightarrow 2AB$ $\triangle H = -321 \text{ kJ}$ The bond energy for A_2 is half the amount of AB. The bond energy of $B_2 = 393 \text{ kJ/mol}$. What is the bond energy of A_2 ? - 13. What are the bond orders of the following species: a) Ne_2 b) O_2^- c) B_2 - 14. Solutions of benzene and toluene obey Raoult's law. The vapor pressures at 20°C are: benzene, 76 torr; toluene, 21 torr. What is the mole fraction of benzene in a benzene-toluene solution whose vapor pressure is 65 torr at 20°C? - 15. A solution contains $0.500~M~HA~(K_a=1.0~\times10^{-8})$ and 0.320~M~NaA. What is the [H⁺] after 0.10 mole of HCl is added to 1.00~L of this solution? - 16. Consider an electrochemical cell with a zinc electrode immersed in a solution of Zn^{2+} and a silver electrode immersed in a solution of Ag^+ . $Zn^{2+} + 2e^- \rightarrow Zn$ $\mathcal{E}^\circ = -0.76 \text{ V}$ $Ag^+ + e^- \rightarrow Ag$ $\mathcal{E}^\circ = 0.80 \text{ V}$ If $[Zn^{2+}]_0$ is 0.050 M and $[Ag^+]_0$ is 10.06 M, calculate \mathcal{E} . - 17. The rate constant for a reaction at 40.0° C is exactly 3 times that at 20.0° C. Calculate the Arrhenius energy of activation E_a for the reaction.(ln 3 =1.1) ## 化學工程學系 (院)學系轉學生招生考試試題紙 ## PERIODIC TABLE OF THE ELEMENTS | 1
H
1.008 | | | | | | | | | | | | | | | | | 2
He
4.003 | |------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|-------------------|--------------------|-------------------------| | 3
Li | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8
O | 9
F | 10
Ne | | 6.941 | 9.012 | | | | | | | | | | | 10.81 | 12.01 | 14.01 | 16.00 | 19.00 | 20.18 | | 11 | 12 | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 18 | | Na
22.99 | Mg
24.31 | | | | · | | | | | | | AI
26.98 | Si
28.09 | P
30.97 | S
32.07 | CI
35.45 | Ar
39.95 | | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | | K
39.10 | Ca
40.08 | Sc
44.96 | Ti
47.88 | V
50.94 | Cr
52.00 | Mn
54.94 | Fe
55.85 | Co
58.93 | Ni
58.69 | Cu
63.55 | Zn
65.39 | Ga
69.72 | Ge
72.61 | As
74.92 | Se
78.96 | Br
79.90 | Kr
83.80 | | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | | Rb
85.47 | Sr
87.62 | Y
88.91 | Zr
91.22 | Nb
92.91 | Mo
95.94 | Tc
(98) | Ru
101.1 | Rh
102.9 | Pd
106.4 | Ag
107.9 | Cd
112.4 | In
114.8 | Sn
118.7 | Sb
121.8 | Te
127.6 | I
126.9 | Xe
131.3 | | 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | | C s
132.9 | Ba
137.3 | La
138.9 | Hf
178.5 | Ta
181.0 | W
183.8 | Re
186.2 | Os
190.2 | Ir
192.2 | Pt
195.1 | Au
197.0 | Hg
200.6 | Tl
204.4 | Pb 207.2 | Bi
209.0 | Po (209) | At
(210) | Rn
(222) | | 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | | 114 | | 116 | \/ | 118 | | Fr (223) | Ra
226.0 | Ac
227.0 | Rf (261) | Db (262) | Sg
(263) | Bh (262) | H s
(265) | Mt
(266) | (269) | (272) | (277) | | (289) | | (289) | | (293) | | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | |--------------------------|-------------------------------------|------------------|--------------------------|--------------------------|--------------------------|-----------------|--------------------------|--------------------------|-------------------|---------------------------|---------------------------|------------------------|--------------------| | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | | 140.1 | _{140.9} | 144.2 | (145) | 150.4 | 152.0 | 157.3 | 158.9 | 162.5 | 164.9 | _{167.3} | 168.9 | 173.0 | 175.0 | | 90
Th
232.0 | 91
Pa
^{231.0} | 92
U
238.0 | 93
Np
237.0 | 94
Pu
(244) | 95
Am
(243) | 96
Cm | 97
Bk
(247) | 98
Cf
(251) | 99
Es
(252) | 100
Fm
(257) | 101
Md
(258) | 102
No (259) | 103
Lr
(260) |