國立聯合大學 104 學年度

化學	工程學系	<u>(</u> 院)學系	轉导	學生招生	考訪	式試題紙
科目:_	普通化學	第_	1	頁共_	2	頁

- 第1題4分其餘每題6分總計共100分,各題如有計算請詳列計算式
- 1. A gaseous mixture containing 1.5 mol Ar and 3.5 mol CO₂ has a total pressure of 7.5 atm. What is the partial pressure of CO₂?
- 2. A 1.57-g sample of a metal chloride, MCl₂, is dissolved in water and treated with excess aqueous silver nitrate. The silver chloride that formed weighed 3.47 g. Calculate the molar mass of M.
- 3. A 0.307-g sample of an unknown triprotic acid is titrated to the third equivalence point using 35.2 mL of 0.106 *M* NaOH. Calculate the molar mass of the acid.
- 4. Given reaction $N_2 + 3H_2 \rightarrow 2NH_3$, you mix 1 mol each of nitrogen and hydrogen gases under the same conditions in a container fitted with a piston. Calculate the ratio of volumes of the container ($V_{\text{final}}/V_{\text{initial}}$).
- 5. You have a 400-mL container containing 55.0% He and 45.0% Ar by mass at 25°C and 1.5 atm total pressure. You heat the container to 100°C. Calculate the total pressure and the ratio of P_{He} : P_{Ar} .
- 6. A sample of N₂ gas is contaminated with a gas (A) of unknown molar mass. The partial pressure of each gas is known to be 200 torr at 25°C. The gases are allowed to effuse through a pinhole, and it is found that gas A escapes at 5 times the rate of N₂. What is the molar mass of gas A?
- 7. Predict the signs (+ or) of ΔS° , ΔH° , and ΔG° for the following reaction at 25°C. $H^{+}_{(aq)} + OH^{-}_{(aq)} \rightarrow H_{2}O(l)$
- 8. The reduction potentials for Au^{3+} and Ni^{2+} are as follows: $Au^{3+} + 3e^- \rightarrow Au$, $\mathcal{E}^\circ = +1.50 \text{ V}$ $Ni^{2+} + 2e^- \rightarrow Ni$, $\mathcal{E}^\circ = -0.232 \text{ V}$ Calculate ΔG° (at 25°C) for the reaction: $2Au^{3+} + 2Ni \rightarrow 3Ni^{2+} + 2Au$
- 9. The decomposition of dinitrogen pentaoxide has an activation energy of 102 kJ/mol and $\Delta H^{\circ}_{rxn} = +55$ kJ/mol. What is the activation energy for the reverse reaction?
- 10. Consider the equation $A(aq) + 2B(aq) \implies 3C(aq) + 2D(aq)$. In one experiment, 45.0 mL of 0.050 M A is mixed with 25.0 mL 0.100 MB. At equilibrium the concentration of C is 0.0410 M. Calculate K.
- $BrO_3^- + 5Br^- + 6H^+ \rightarrow 3Br_2 + 3H_2O$ At a particular instant in time, the value of $-\triangle[Br^-]/\triangle t$ is 2.9 x 10^{-3} mol/L s. What is the value of $\triangle[Br_2]/\triangle t$ in the same

11. The balanced equation for the reaction of bromate ion with bromide ion in acidic solution is given by:

- 12. Consider the reaction: $A_2 + B_2 \rightarrow 2AB$ $\triangle H = -321 \text{ kJ}$ The bond energy for A_2 is half the amount of AB. The bond energy of $B_2 = 393 \text{ kJ/mol}$. What is the bond energy of A_2 ?
- 13. What are the bond orders of the following species: a) Ne_2 b) O_2^- c) B_2
- 14. Solutions of benzene and toluene obey Raoult's law. The vapor pressures at 20°C are: benzene, 76 torr; toluene, 21 torr. What is the mole fraction of benzene in a benzene-toluene solution whose vapor pressure is 65 torr at 20°C?
- 15. A solution contains $0.500~M~HA~(K_a=1.0~\times10^{-8})$ and 0.320~M~NaA. What is the [H⁺] after 0.10 mole of HCl is added to 1.00~L of this solution?
- 16. Consider an electrochemical cell with a zinc electrode immersed in a solution of Zn^{2+} and a silver electrode immersed in a solution of Ag^+ . $Zn^{2+} + 2e^- \rightarrow Zn$ $\mathcal{E}^\circ = -0.76 \text{ V}$ $Ag^+ + e^- \rightarrow Ag$ $\mathcal{E}^\circ = 0.80 \text{ V}$ If $[Zn^{2+}]_0$ is 0.050 M and $[Ag^+]_0$ is 10.06 M, calculate \mathcal{E} .
- 17. The rate constant for a reaction at 40.0° C is exactly 3 times that at 20.0° C. Calculate the Arrhenius energy of activation E_a for the reaction.(ln 3 =1.1)

化學工程學系 (院)學系轉學生招生考試試題紙

PERIODIC TABLE OF THE ELEMENTS

1 H 1.008																	2 He 4.003
3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
11	12											13	14	15	16	17	18
Na 22.99	Mg 24.31				·							AI 26.98	Si 28.09	P 30.97	S 32.07	CI 35.45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.39	Ga 69.72	Ge 72.61	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
C s 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 181.0	W 183.8	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)
87	88	89	104	105	106	107	108	109	110	111	112		114		116	\/	118
Fr (223)	Ra 226.0	Ac 227.0	Rf (261)	Db (262)	Sg (263)	Bh (262)	H s (265)	Mt (266)	(269)	(272)	(277)		(289)		(289)		(293)

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
140.1	_{140.9}	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	_{167.3}	168.9	173.0	175.0
90 Th 232.0	91 Pa ^{231.0}	92 U 238.0	93 Np 237.0	94 Pu (244)	95 Am (243)	96 Cm	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)