國立聯合大學 106 學年度碩士班考試招生

電子工程學系碩士班 入學考試試題

目: 工程數學

1. (12%) Please solve the following ODEs:

(a)
$$\frac{dy}{dx} = -\frac{2xy^3 + 2}{3x^2y^2 + e^y}$$

(a)
$$\frac{dy}{dx} = -\frac{2xy^3 + 2}{3x^2y^2 + e^y}$$
 (b) $\cos(x+y)dx + (3y^2 + 2y + \cos(x+y))dy = 0$

2. (10%) Given second order linear differential equation:

$$y'' - 3y' + 2y = x^2 + 1$$
, $y(0) = 1$ and $y'(0) = 1$

- (a) Find general solution
- (b) Find final solution

3. (8%) Please solve
$$x \frac{dy}{dx} + y = -2xy^2$$

- (10%) Find the general solution of $x^2y'' 4xy' + 6y = 4$
- 5. (15%) Given A = i + j + 2k and B = i j k,

evaluate (a) 3A-2B

- (b) A•B (dot product of A and B)
- (c) $\mathbb{A} \times \mathbb{B}$ (cross product of A and B)
- 6. (15%) Given $\varphi(x, y, z) = xz yz$ and $\mathbb{F}(x, y, z) = 4z\mathbf{i} + 2y\mathbf{j} + (x-z)\mathbf{k}$,

evaluate (a) $\nabla \varphi$ (gradient (梯度) of φ)

- (b) ∇●F (divergence (散度) of F)
- (c) ∇×F (curl (旋度) of F)
- 7. (10%) Consider the curve C with position vector $\mathbf{F}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + t\mathbf{k}$ for $0 \le t \le 1$,

evaluate (a) $\mathbb{F}'(t)$ (tangent vector to the curve C)

(b) the length of curve
$$C$$
 (Hint: $\int_a^b ||\mathbf{F}'(t)|| dt$)

8. (10%) Use Green's Theorem (格林定理) to evaluate $\oint_C (x^2 - 2y) dx + (2y^2 + x^2) dy$ along the path C shown below.

(0,1)
$$C$$
 (2,1) C (1) C (2,1) C (1) C (2,1) C (2,1) C (1) C (2,1) C (2,1) C (1) C (2,1) C (2,1) C (2,0) C (2,

9. (10%) If $f(x) = \begin{cases} 1 & \text{for } -1 \le x \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$, evaluate its Fourier integral coefficients A_{ω} and B_{ω} .

(Hint:
$$A_{\omega} = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \cos(\omega x) dx$$
 $B_{\omega} = \frac{1}{\pi} \int_{-\infty}^{\infty} f(x) \sin(\omega x) dx$)